Package: wfe 1.9.1

wfe: Weighted Linear Fixed Effects Regression Models for Causal Inference

Provides a computationally efficient way of fitting weighted linear fixed effects estimators for causal inference with various weighting schemes. Weighted linear fixed effects estimators can be used to estimate the average treatment effects under different identification strategies. This includes stratified randomized experiments, matching and stratification for observational studies, first differencing, and difference-in-differences. The package implements methods described in Imai and Kim (2017) "When should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data?", available at <https://imai.fas.harvard.edu/research/FEmatch.html>.

Authors:In Song Kim [aut, cre], Kosuke Imai [aut]

wfe_1.9.1.tar.gz
wfe_1.9.1.zip(r-4.5)wfe_1.9.1.zip(r-4.4)wfe_1.9.1.zip(r-4.3)
wfe_1.9.1.tgz(r-4.4-x86_64)wfe_1.9.1.tgz(r-4.4-arm64)wfe_1.9.1.tgz(r-4.3-x86_64)wfe_1.9.1.tgz(r-4.3-arm64)
wfe_1.9.1.tar.gz(r-4.5-noble)wfe_1.9.1.tar.gz(r-4.4-noble)
wfe_1.9.1.tgz(r-4.4-emscripten)wfe_1.9.1.tgz(r-4.3-emscripten)
wfe.pdf |wfe.html
wfe/json (API)

# Install 'wfe' in R:
install.packages('wfe', repos = c('https://insongkim.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/insongkim/wfe/issues

On CRAN:

4.40 score 20 stars 25 scripts 200 downloads 2 exports 16 dependencies

Last updated 5 years agofrom:d7c0b7668a. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 21 2025
R-4.5-win-x86_64OKJan 21 2025
R-4.5-linux-x86_64OKJan 21 2025
R-4.4-win-x86_64OKJan 21 2025
R-4.4-mac-x86_64OKJan 21 2025
R-4.4-mac-aarch64OKJan 21 2025
R-4.3-win-x86_64OKJan 21 2025
R-4.3-mac-x86_64OKJan 21 2025
R-4.3-mac-aarch64OKJan 21 2025

Exports:pwfewfe

Dependencies:abindarmbootcodalatticelme4MASSMatrixminqanlmenloptrrbibutilsRcppRcppEigenRdpackreformulas